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Nonlinear theory of geostrophic adjustment.
Part 2. Two-layer and continuously stratified

primitive equations
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This paper continues the work started in Part 1 (Reznik, Zeitlin & Ben Jelloul 2001)
and generalizes it to the case of a stratified environment. Geostrophic adjustment of
localized disturbances is considered in the context of the two-layer shallow-water and
continuously stratified primitive equations in the vertically bounded and horizontally
infinite domain on the f -plane. Using multiple-time-scale perturbation expansions
in Rossby number Ro we show that stratification does not substantially change
the adjustment scenario established in Part 1 and any disturbance of well-defined
scale is split in a unique way into slow and fast components with characteristic
time scales f −1

0 and (f0Ro)−1 respectively, where f0 is the Coriolis parameter. As
in Part 1 we distinguish two basic dynamical regimes: quasi-geostrophic (QG) and
frontal geostrophic (FG) with small and large deviations of the isopycnal surfaces,
respectively. We show that the dynamics of the FG regime in the two-layer model
depends strongly on the ratio of the layer depths. The difference between QG and
FG scenarios of adjustment is demonstrated. In the QG case the fast component of
the flow essentially does not ‘feel’ the slow one and is rapidly dispersed leaving the
slow component to evolve according to the standard QG equation (corrections to this
equation are found for times t � (f0Ro)−1). In the FG case the fast component is
a packet of inertial oscillations produced by the initial perturbation. The space-time
evolution of the envelope of inertial oscillations obeys a Schrödinger-type modulation
equation with coefficients depending on the slow component. In both QG and FG
cases we show by direct computations that the fast component does not produce any
drag terms in the equations for the slow component; the slow component remains
close to the geostrophic balance. However, in the continuously stratified FG regime,
as well as in the two-layer regime with the layers of comparable thickness, the splitting
is incomplete in the sense that the slow vortical component and the inertial oscillations
envelope evolve on the same time scale.

1. Introduction
In the first part of this work (Reznik, Zeitlin & Ben Jelloul 2001, hereafter referred

to as Part 1) we developed a theory of nonlinear geostrophic adjustment of arbitrary
localized finite-energy disturbances in the framework of the non-dissipative rotating
shallow-water (RSW) dynamics. The only assumptions made were the well-defined
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scale of the disturbance and the smallness of the Rossby number Ro. The latter
assumption allows to use multi-time-scale expansions for solving the initial-value
problem. It was shown that velocity and pressure fields are split in a unique way into
slow and fast components with characteristic time scales f −1

0 and (f0Ro)−1 respectively,
where f0 is the Coriolis parameter. The slow component is not influenced by the fast
one and remains close to the geostrophic balance. The algorithm of initialization of
both components follows by construction. The scenario of adjustment depends on
the characteristic scale and/or initial relative elevation of the free surface. For small
relative elevations the evolution of the slow motion is governed by the well-known
quasi-geostrophic (QG) dynamics for times t � (f0Ro)−1 and modifications to this
dynamics for longer times t � (f0Ro2)−1 were found. The fast component consists
mainly of linear inertia–gravity waves rapidly propagating outward from the initial
disturbance. For large relative elevations the slow vortex field is governed by the
frontal geostrophic (FG) dynamics equation. In this case the fast component is a
spatially localized packet of inertial oscillations evolving on the background of the
slow component of the flow. The envelope of the packet obeys a Schrödinger-type
equation with coefficients depending on the even slower vortex motion.

While the QG results corroborated the ‘standard wisdom’ view of adjustment, the
FG results showed a possibility of incomplete or delayed adjustment due to inertial
oscillations coexisting with the slow component of motion.

The question we address in the present paper is how stratification modifies these
results. The simplest way to introduce stratification effects is to consider layered
models. We, therefore, start our analysis with the standard rotating two-layer shallow-
water model (which will be abbreviated as 2RSW in what follows) with rigid lid and
flat bottom boundary conditions. We thus have the baroclinic interface displacement
instead of the barotropic free-surface elevation.

As in the RSW case a slow-dynamics reduction of the model by implicit filtering
of the internal inertia–gravity waves (IGW) via exclusive use of the slow (‘vortical’)
time scale (f0Ro)−1 is standard and widely applied (cf. e.g. Pedlosky 1982; Gent &
McWilliams 1983a, b). Similarly to the RSW case, in the two-layer (or, more generally,
multi-layer) models the geostrophic balance condition allows different dynamical
regimes depending on the value of the Burger number and the ratio of the layer
depths. The standard QG regime corresponds to small deviations of the isopycnals
from their equilibrium positions and to typical horizontal scales of the order of the
Rossby deformation radius RR . The frontal geostrophic (FG) regime corresponds
to large deviations of the isopycnal surfaces under the condition that the typical
horizontal scale of the flow greatly exceeds the deformation radius. The FG regime
in the two-layer model was first introduced, again by using exclusively the slow time
scale, by Cushman-Roisin, Sutyrin & Tang (1992). Analogous regimes in the two-layer
ocean with a sloping bottom were analysed by Swaters (1993). In both works the
upper layer was assumed to be much thinner than the lower one; the corresponding
model will be referred to as inhomogeneous (FGI) in what follows. Later Benilov &
Reznik (1996) classified all possible strongly nonlinear regimes in a two-layer ocean
of constant depth (some of these regimes were studied independently by Stegner &
Zeitlin (1996) in the context of near-axisymmetric solitary vortices). A frontal regime
with the depths of the layers of the same order, which we call homogeneous (FGH)
below was found. A complete classification of the two-layer frontal regimes including
the effects of planetary sphericity and variable bottom topography was given by
Karsten & Swaters (1999). The same authors (Karsten & Swaters 2000a, b) explored
the stability of various two-layer FG sub-regimes on the beta-plane.
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In what follows we propose a full perturbative derivation of the slow dynamics
equations for the two-layer QG and FG cases, instead of the ‘filtered’ derivation,
by imposing an ad hoc time scale. We consider arbitrary non-balanced initial dis-
turbances of well-defined horizontal and vertical scales under the single condition
that the Rossby number (Ro = ε, in what follows) is small, and analyse the dynamics
using multiple-time-scale asymptotic expansions in ε. We show that, as in the
RSW case, the above-mentioned QG and FG slow-dynamics equations follow from
the removal of resonances in the fast dynamics and, once the resonances are
eliminated, the fast component can be completely quantified. We calculate explicitly
the Reynolds stresses due to the fast component and demonstrate that they vanish
at the first three orders of the perturbation theory. Corrections to the standard
QG dynamics for times much longer than (f0Ro)−1 are obtained. Our construction
provides an algorithm for initialization of both fast and slow variables. In the FG
regime, it turns out that the fast component accompanies the slow one in the form
of inertial oscillations. Some recent experimental results may be explained by this
incomplete adjustment in the two-layer systems (Stegner, Bouruet-Aubertot & Pichon
2003).

We then consider the continuously stratified case in the same geometry (the N -layer
generalizations are straightforward). For simplicity we use the hydrostatic primitive
equations (HSPE); therefore vertically propagating inertia waves are excluded and the
model is of the shallow-water type. Here we again consider the standard QG regime
(cf. Pedlosky 1982) and the FG regime, whose slow-dynamics version for continuous
stratification was introduced by Benilov (1993) and turns out to be a generalization
of the FGH regime in 2RSW. We do not include the analysis of regimes intermediate
between QG and FG (Romanova & Zeitlin 1984; Stegner & Zeitlin 1999) in the
present paper; it may be done along the same lines as in Part 1 for RSW.

The method of multiple-time scale expansions in Rossby number allows us to prove
asymptotic validity of the above-mentioned balanced models, to find corrections to
these models for longer times and to specify the adjustment scenarios. A key element
of our approach is the initial-value problem setting and the radiation boundary
conditions for waves which means that most of the resonances appearing in the
(triple-) periodic box geometry are avoided. The absence of the fast-motion drag in
the slow equations is proved and the modulation equation for the inertial oscillations
in the FG regime is obtained.

It should be noted that, as in Part 1, below we limit considerations to vortex-like
initial perturbations having a single horizontal scale. The calculations here are closely
related to those in Part 1, especially regarding the QG regime. We, thus limit ourselves
to a presentation of the main results and a brief description of the method in the
QG regime. Full proofs and detailed calculations are available as a supplement to
the online version, or from the authors or the Journal of Fluid Mechanics Editorial
Office, Cambridge. The FG calculations are given in more detail. We present the main
results first so readers not interested in subsequent proofs may skip the details. We
do not repeat here the classical references on geostrophic adjustment which may be
found in Part 1. The same notation as in Part 1 is kept whenever possible.

The paper is organized as follows. In § 2 we present an analysis of the 2RSW model,
in the QG (§ 2.2) and the FG (§ 2.3) regimes. Section 3 contains the analysis of the
continuously stratified case in the framework of the HSPE with QG being treated in
§ 3.2 and FG in § 3.3. Finally, a discussion and comparison with the existing literature
are presented in § 4.
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2. Geostrophic adjustment in the two-layer shallow water model
on the f -plane

2.1. Preliminaries

We consider a non-dissipative fluid on the f -plane contained between a rigid lid (at
z = 0) and a rigid bottom (at z = −H ; topographic effects may be easily introduced).
The unperturbed depths of the upper and lower layers are H1 and H2, respectively;
H1 + H2 =H .

The equations of motion for a two-layer rotating shallow-water system (2RSW) are
the horizontal momentum equations:

∂tvi + vi · ∇vi + f ẑ ∧ vi +
1

ρi

∇πi = 0, i = 1, 2 (2.1)

(no summation over i; the combination i + 1 is understood modulo 2 everywhere
below); and the mass conservation equations in each layer:

∂t (Hi − (−1)i+1η) + ∇ · (vi(Hi − (−1)i+1η)) = 0, i = 1, 2, (2.2)

where f is the Coriolis parameter which is equal to f0 in the f -plane approximation
(to be adopted below unless otherwise stated), vi = (ui(x, y, t), vi(x, y, t)) is the two-
dimensional velocity field in each of the two layers, ρi is the density of the layers, η

is the vertical displacement of the interface, πi are defined with the help of the full
pressure fields Pi in each layer:

Pi = −ρigz + (i − 1)(ρ1 − ρ2)gH1 + πi , (2.3)

g is the acceleration due to gravity (g becomes the reduced gravity g′ below). Here and
below ∂n

abc... denotes the nth partial derivative with respect to a, b, c, . . . , ∇ =(∂x, ∂y)
in this section and ẑ is the vertical unit vector.

The potential vorticity (PV) conservation equations in each layer readily follow:

(∂t + vi · ∇)Πi = 0, Πi =
ζi + f

Hi − (−1)i+1η
, (2.4)

where ζi = ẑ · ∇ ∧ vi is the relative vorticity in each layer. From the dynamical boundary
condition on the interface

P1 = P2|z=−H1+η (2.5)

it follows that

(ρ2 − ρ1)gη = π2 − π1. (2.6)

The vertical velocity should vanish at the top and bottom.
The following parameters:

N = 2
ρ2 − ρ1

ρ2 + ρ1

, d =
H1

H2

, g′ = gN, H̄ =
H1H2

H1 + H2

, ρ̄ =
1

2
(ρ1 + ρ2)

will be used below for compactness.

2.2. The QG regime

2.2.1. Definitions

Assuming in this Subsection that d =O(1) we introduce the following QG-scaling:

horizontal velocity scale U , horizontal spatial scale L ∼ RR =
√

g′H̄ /f0, where RR is
the baroclinic Rossby deformation radius, pressure scale P = ρ̄f0UL and the scale of
the interface variations η∗ = εH̄ . The time scale is f −1

0 . Introducing the (order one)
parameters h̄i = Hi/(H1 + H2), i = 1, 2 we rewrite the horizontal momentum and mass
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conservation equations in the following non-dimensional form:

∂tvi + εvi · ∇vi + ẑ ∧ vi + ∇πi = 0, i = 1, 2; (2.7)

∂t (1 − (−1)i+1εh̄i+1η) + ∇ · ((1 − (−1)i+1εh̄i+1η)vi) = 0, i = 1, 2. (2.8)

Here, in order to simplify the formulae we adopt the oceanographic context and
suppose that the densities of the layers are close to each other (and to the mean
density). The corresponding density ratios may be easily restored in front of the
pressure gradient terms here and below. The non-dimensional PVs are

Πi =
εζi + 1

1 − (−1)i+1h̄i+1εη
, (2.9)

where ζi here and below we denote the relative vorticities by ζi = ∂xvi − ∂yui; vi =
(ui, vi). The non-dimensional version of (2.6) is

π2 − π1 = η. (2.10)

The perturbative expansions for the velocity and interface displacement fields are

vi = v
(0)
i (x, y; t, t1, t2, . . .) + εv

(1)
i (x, y; t, t1, t2, . . .) + . . . ,

η = η(0)(x, y; t, t1, t2, . . .) + εη(1)(x, y; t, t1, t2, . . .) + . . . ,

}
(2.11)

where t1, t2 . . . scale as (εf0)
−1, ε−2f −1

0 , . . . , and each dynamical variable at each order
may be uniquely split into the slow (denoted below by an overbar) and fast (denoted
by a tilde) part defined, correspondingly, as the average over the fast time t and the
fluctuation around it. In what follows we are looking for a perturbative solution of
the Cauchy problem with initial conditions

vi(t = 0) = vIi
, η(t = 0) = ηI (2.12)

for the system (2.1), (2.2) under the QG scaling.

2.2.2. The main results

Each field is represented as a sum of slow and fast components. For example, the
velocity field is

vi =

∞∑
n=0

εnv̄
(n)
i (x, y; t1, t2, . . .) +

∞∑
n=0

εnṽ
(n)
i (x, y; t, t1, t2, . . .), (2.13)

and correspondingly for πi , η. The representation (2.13) is unique since the fast
components ṽ

(n)
i are defined to have zero mean over the fast time t:

〈
ṽ

(n)
i

〉
= lim

T →∞

1

T

∫ T

0

dt ṽ
(n)
i = 0. (2.14)

We are able to demonstrate (up to the third order in ε) that the slow and the
fast components are dynamically split and obey their own evolution equations with
uniquely defined initial conditions. The initialization procedure for each component
is given order by order in ε. The slow component is described (up to order-ε terms)
by the pair of coupled equations for the pressure and the interface displacement
variables π̄i = π̄(0)

i + επ̄(1)
i , η̄ = η̄(0) + εη̄(1):

Di

Dt1
[∇2π̄i + (−1)i+1h̄i+1η̄ + ε(−1)i+1h̄i+1η̄(∇2π̄i + (−1)i+1h̄i+1η̄)

− ε∇π̄i · ∇(∇2π̄i + (−1)i+1h̄i+1η̄) − 2εJ (∂x π̄i , ∂y π̄i)] = 0, (2.15)
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where

Di

Dt1
(. . .) := ∂t1 (. . .) + J

(
π̄i − ε

(∇π̄i)
2

2
, . . .

)
, i = 1, 2 (2.16)

and π̄2 − π̄1 = η̄.
The fast component is the inertia–gravity wave packet formed by the initial

conditions and described by the wave equation for η̃ = η̃(0) + εη̃(1):

−∂2η̃

∂t2
− η̃ + ∇2η̃ = εR(x, y; t, t1, . . .) (2.17)

with the known right-hand side produced by the nonlinear interaction of the lowest-
order fast field with itself and with the slow component. The key point is that R does
not contain resonant terms and has zero mean in the sense of (2.14) and, therefore, the
field η̃ and all other fast fields consist of IGW propagating outward of the localized
initial perturbation and decay in time at any given spatial location. This is why the
fast-component drag upon the slow fields is absent.

When ε = 0 equations (2.15), (2.16) are reduced to the standard QG system for the 2-
layer model describing the QG motion on times of the order of (εf0)

−1. Equation (2.15)
is applicable on much longer times of the order (εf0)

−2, which is why we call it the
improved quasi-geostrophic potential vorticity (IQGPV) equation.

The proof of these results with detailed calculations are available as a supplement
to the online version, or from the authors or the Journal of Fluid Mechanics Editorial
Office, Cambridge. The calculations use the decomposition of the velocity and the
pressure fields into barotropic and baroclinic components and follow the corre-
sponding calculations of Part 1.

2.3. The FG regime

2.3.1. Definitions and the basic equations

The FG regime corresponds to interface displacements of the order one. The FG
scaling, thus, differs from the QG one used before. It is as follows. The interface
displacement η is scaled as H1. Choosing the characteristic length scale L0 we rescale
the pressure perturbations πi (cf. (2.3)) by ρif0ViL0, where Vi, i =1, 2 are the velocity
scales in each layer. The velocity scales V1 and V2 are of the same order when the
parameter d is of order one, which corresponds to the FGH sub-regime (cf. Benilov &
Reznik 1996) or are chosen to be V2 ∼ εV1 for the FGI sub-regime where the parameter
d is small, d ∼ ε2 (cf. Cushman-Roisin et al. 1992). The consistency of these scalings
with the dynamical boundary condition on the interface (2.5) requires that in order
to have order-one (frontal) interface displacements the Burger number Bu = (RR/L0)

2

should be small Bu = O(ε). Here the Rossby deformation radius is defined with the
help of H1: RR =

√
g′H1/f0.

Introducing the complex variables ξ = x + iy, ξ ∗ = x − iy (cf. Part 1) we obtain the
following non-dimensional equations for the FG regime:

∂tUi + iUi + ε(Ui∂ξ Ui + U∗
i ∂ξ ∗ Ui) = −2∂ξ ∗ πi , i = 1, 2,

∂ξ [(1 − η)U1 + (d−1 + η)U2] + c.c. = 0,

∂tη = ε∂ξ [(1 − η)U1] + c.c.,

π2 = π1 + η,




(2.18)

where U1,2 = u1,2 + iv1,2 are the complex velocities in respective layers and η is the
interface displacement.
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It is convenient to rewrite (2.18) in terms of the barotropic and the baroclinic
modes (cf. Benilov & Reznik 1996):

∂tUbt + iUbt +
εd

1 + d

[
∂ξ

(
U2

bt + ΦU2
bc

)
+ ∂ξ ∗(|Ubt |2 + Φ|Ubc|2)

]
= −2∂ξ ∗P, (2.19)

∂tUbc + iUbc +
εd

1 + d
[∂ξ (UbtUbc) + U∗

bc∂ξ ∗ Ubt + U∗
bt ∂ξ ∗ Ubc

+ Ubc[∂ξ ((d
−1 + η) − Ubc) − (1 − η)∂ξ Ubc]

+ U∗
bc[∂ξ ∗((d−1 + η)Ubc) − (1 − η)∂ξ ∗ Ubc]] = 2∂ξ ∗η, (2.20)

∂ξ Ubt + c.c. = 0, (2.21)

∂tη =
εd

1 + d
[−Ubt ∂ξη + ∂ξ (ΦUbc)] + c.c. (2.22)

Here

Ubt = (1 − η)U1 + (d−1 + η)U2, Ubc = U1 − U2, P = π1 + d−1π2 +
η2

2
(2.23)

and the notation Φ = (1 − η)(d−1 + η) is used for compactness.

2.3.2. The main results

As in the QG regime all fields are split into slow and fast parts (cf. (2.13)). Both
the slow and the fast components evolve from uniquely defined initial conditions.
However, unlike the QG case, the fast component consists not of the propagating
IGW but of inertial oscillations with slowly changing amplitude. For example, the
barotropic and baroclinic complex velocities in both sub-regimes are expressed as
follows:

Ubt = 2i∂ξ ∗P, Ubc = −2i∂ξ ∗η + Ae−it. (2.24)

Here the slow functions η, P denote the leading-order interface displacement and
the barotropic pressure, respectively, and A = A(ξ, ξ ∗, t1, . . .) is the slowly evolving
envelope of the inertial oscillations. Correspondingly, the leading-order evolution is
determined by two coupled equations for slow P and η and a separate equation for
A. The evolution equations obtained below are as follows:

FGH sub-regime

∂t1η =
1

1 + d−1
J (η, P ), (2.25)

∂t1∇2P +
1

1 + d−1
[J (P, ∇2P ) + ∇ · ((1 − η)(d−1 + η)J (η, ∇η))] = 0, (2.26)

(1 + d−1)∂t1A + J (P − η2 − (d−1 − 1)η, A)

+
i

2
[∇2(P −η2 − (d−1 −1)η)+(∇η)2]A− i

2
∇2((1−η)(d−1 +η)A)=0; (2.27)

FGI sub-regime

∂t2η + J (P, η) + J

(
η, (1 − η)∇2η − (∇η)2

2

)
= 0, (2.28)

∂t2∇2P + J (P, ∇2P ) − J

(
η, (1 − η)∇2η +

(∇η)2

2

)
= 0, (2.29)

∂t1A − J (η, A) − i

2
∇2A +

i

2
[∇2(ηA) − A∇2η] = 0. (2.30)
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The most important and non-trivial feature of both FG sub-regimes is that although
the inertial oscillations do not run away like the IGW in the preceding Section, they
do not make any contribution to the evolution of the slow component. In other
words, the fast oscillations exert no drag on the slow vortical motion. At the same
time, the slow modulation of the inertial oscillations is guided by the vortical motion
since the coefficients in the modulation equations (2.27), (2.30) depend on P, η.

Another interesting point is the difference between the FGH and the FGI sub-
regimes. In the former the slow component and the modulation amplitude evolve in
the same slow time t1, while in the latter the slow component evolves in the slow time
t2, and the amplitude A in the faster time t1. This is a novel feature arising due to
stratification: in the barotropic RSW model the single FG regime is analogous to the
FGI sub-regime (see Part 1 for details).

2.3.3. FGH: calculations at the lowest and the first order

The momentum and the continuity equations give at the lowest order:

∂tU(0)
bt + iU(0)

bt = −2∂ξ ∗P (0),

∂tU(0)
bc + iU(0)

bc = 2∂ξ ∗η(0),

}
(2.31)

∂ξ U(0)
bt + c.c. = 0, ∂tη

(0) = 0. (2.32)

Hence

U(0)
bt = 2i∂ξ ∗P (0), P (0) = P (0)(x, y, t1, . . .), (2.33)

U(0)
bc = Ū(0)

bc + Ũ(0)
bc = −2i∂ξ ∗η(0) + A(0)e−it , η(0) = η(0)(x, y, t1, . . .). (2.34)

Proper initial conditions for the slow and the fast parts readily follow from the
above equations. Note however that in order to respect the FG scaling the barotropic
component of the initial velocity should be almost divergenceless (the same is true in
the FGI case below).

At the first order we have

∂tU(1)
bt + iU(1)

bt = −2∂ξ ∗P (1) + F
(1)
bt ,

∂tU(1)
bc + iU(1)

bc = 2∂ξ ∗η(1) + F
(1)
bc ,

}
(2.35)

∂ξ U(1)
bt + c.c. = 0, (2.36)

∂tη
(1) + ∂t1η

(0) =
1

1 + d−1

[
−U(0)

bt ∂ξη
(0) + ∂ξ

(
Φ (0)U(0)

bc

)]
+ c.c., (2.37)

where we define

F
(1)
bt = −∂t1U

(0)
bt − 1

1 + d−1

[
∂ξ

(
U(0)2

bt + Φ (0)U(0)2
bc

)
+ ∂ξ ∗

(∣∣U(0)
bt

∣∣2 + Φ (0)
∣∣U(0)

bc

∣∣2)], (2.38)

F
(1)
bc = −∂t1U

(0)
bc − 1

1 + d−1

[
∂ξ

(
U(0)

bt U(0)
bc

)
+ U(0)∗

bc ∂ξ ∗ U(0)
bt + U(0)∗

bt ∂ξ ∗ U(0)
bc

+ U(0)
bc

[
∂ξ

((
d−1 + η(0)

)
U(0)

bc

)
−

(
1 − η(0)

)
∂ξ U(0)

bc

]
+ U(0)∗

bc

[
∂ξ ∗

((
d−1 + η(0)

)
U(0)

bc

)
−

(
1 − η(0)

)
∂ξ ∗ U(0)

bc

]]
. (2.39)

From (2.37) and (2.33) the equation (2.25) for η(0) follows together with

η(1) =
1

1 + d−1
ie−it ∂ξ

(
Φ (0)A(0)

)
+ c.c. + η̄(1). (2.40)
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From (2.35), (2.36), (2.33) we obtain

∂ξ F̄
(1)
bt − ∂ξ ∗ F̄

(1)∗

bt = 0, (2.41)

F̄
(1)
bt = −∂t1U

(0)
bt − 1

1 + d−1

[
∂ξ

(
U(0)2

bt + Φ (0)Ū(0)2

bc

)
+ ∂ξ ∗

〈∣∣U(0)
bt

∣∣2 + Φ (0)
∣∣U(0)

bc

∣∣2〉]. (2.42)

From (2.41), (2.42), (2.33), (2.34) the evolution equation (2.26) for the barotropic
pressure component P (0) is obtained. It is worth noting that A(0) enters in the
equation for F̄

(1)
bt but cancels out in the equation for P (0).

By virtue of (2.40) the right-hand side of the second equation in (2.35) is well-
defined and the condition of absence of secular terms gives the equation (2.27) for
the amplitude A(0).

2.3.4. FGI: preliminaries

In the FGI sub-regime the scaling should be changed because of the shallow upper
layer. Hence, we take (cf. Cushman-Roisin et al. 1992)

d = O(ε2), U1 = O(1), U2 = O(ε) (2.43)

and therefore

Ubt = (1 − η)U1 + (d−1 + η)U2 = O(ε−1), Ubc = U1 − U2 = O(1). (2.44)

Correspondingly, a solution is sought in the form

Ubc = U(0)
bc + εU(1)

bc + ε2U(2)
bc + . . . ,

Ubt = ε−1U(0)
bc + U(1)

bc + εU(2)
bc + . . . ,

P = ε−1P (0) + P (1) + εP (2) + . . . ,

η = η(0) + εη(1) + ε2η(2) + . . . .




(2.45)

In what follows we assume that d = ε2 for simplicity of notation.

2.3.5. FGI: calculations

The lowest-order calculation coincides exactly with the FGH one and equations
(2.31)–(2.32) remain valid. At the first order we have

∂tU(1)
bt + iU(1)

bt = −2∂ξ ∗P (1) − ∂t1U
(0)
bt , (2.46)

∂tU(1)
bc + iU(1)

bc = 2∂ξ ∗η(1) − ∂t1U
(0)
bc − U(0)

bc ∂ξ U(0)
bc − U(0)∗

bc ∂ξ ∗ U(0)
bc , (2.47)

∂ξ U(1)
bt + c.c. = 0, (2.48)

∂tη
(1) + ∂t1η

(0) = ∂ξ

[(
1 − η(0)

)
U(0)

bc

]
+ c.c. (2.49)

Like in the frontal regime in Part 1, by removing resonances we obtain the following
modulation equation for the amplitude of inertial oscillations:

−∂t1A(0) + 2i∂2
ξξ ∗

((
1 − η(0)

)
A(0)

1

)
+ 2iA(0)∂2

ξξ ∗η
(0)

+ 2i
(
∂ξ ∗η(0)∂ξ A(0) − ∂ξη

(0)∂ξ ∗ A(0)
)
= 0. (2.50)

In the real notation this equation takes the form (2.30).
After elimination of the secular growth, the regular solution of the fast part of

(2.47) may be easily found (see an analogous calculation in Part 1). From (2.46),
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(2.48), and (2.33) we obtain the following equations for the slow barotropic variables:

U(1)
bt = 2i∂ξ ∗P (1), P (1) = P (1)(x, y, t1, . . .), P (0) = P (0)(x, y, t2, . . .). (2.51)

The first slow correction to the baroclinic velocity field is obtained by averaging of
(2.47)

Ū(1)
bc = −i

(
2∂ξ ∗ η̄(1) + 4

(
∂ξ ∗ η̄(0)∂2

ξξ ∗ η̄
(0) − ∂ξ η̄

(0)∂2
ξ ∗ξ ∗ η̄

(0)
)

− A(0)∗∂ξ ∗ A(0)
)
. (2.52)

Again, note that the amplitude of inertial oscillations enters this expression. At second
order the momentum equations give

∂tU(2)
bt + iU(2)

bt = −2∂ξ ∗P (2) + F
(2)
bt , (2.53)

∂tU(2)
bc + iU(2)

bc = 2∂ξ ∗η(2) + F
(2)
bc . (2.54)

Here

F
(2)
bt = −∂t2U

(0)
bt − ∂t1U

(1)
bt − ∂ξ

[(
U(0)

bt

)2
+

(
1 − η(0)

)(
U(0)

bc

)2]
− ∂ξ ∗

[∣∣U(0)
bt

∣∣2 +
(
1 − η(0)

)∣∣U(0)
bc

∣∣2] (2.55)

and

F
(2)
bc = −∂t2U

(0)
bc − ∂t1U

(1)
bc − ∂ξ

(
U(0)

bt U(0)
bc

)
− U(0)∗

bc ∂ξ ∗ U(0)
bt − U(0)∗

bt ∂ξ ∗ U(0)
bc

− U(1)
bc ∂ξ U(0)

bc − U(1)∗
bc ∂ξ ∗ U(0)

bc − U(0)
bc

[
∂ξ U(1)

bc −
(
1 − η(0)

)
∂ξ U(0)

bc

]
− U(0)∗

bc

[
∂ξ ∗ U(1)

bc −
(
1 − η(0)

)
∂ξ ∗ U(0)

bc

]
. (2.56)

The divergence and mass-conservation equations give, respectively,

∂ξ U(2)
bt + c.c.= 0, (2.57)

∂t2η
(0) + ∂t1η

(1) + ∂tη
(2) − ∂ξ

((
1 − η(0)

)
U(1)

bc − η(1)U(0)
bc

)
+ U(0)

bt ∂ξη
(0) + c.c.= 0. (2.58)

By averaging this equation in t and supposing that η(2) is bounded in time we obtain

∂t1 η̄
(1) + ∂t2 η̄

(0) −
(
∂ξ

[(
1 − η(0)

)
Ū(1)

bc

]
− ∂ξ

(
η(1)Ū(0)

bc

)
+ c.c.

)
+

〈
∂ξ

(
η̃(1)Ũ(0)

bc

)
+ c.c.

〉
−

(
2i∂ξ ∗P (0)∂ξη

(0) + c.c.
)
= 0. (2.59)

The evolution equation for η̄(0) follows from (2.59) as a condition of absence of secular
growth of η̄(1) in t1. Coming back to the real notation we obtain (2.28) for η̄(0).

From (2.53), (2.57) we have

∂t

(
∂ξ U(2)

bt − c.c.
)

= −i
(
∂t2∇2P (0) + ∂t1∇2P (1)

)
+ ∂ξF

(2)
bt − c.c.= 0. (2.60)

By time averaging this equation and using (2.33), (2.34), (2.51), (2.55) we find the
evolution equation (2.29) for P (0).

A calculation analogous to that made in Part 1 shows that there are no nonlinear
(cubic) corrections to this Schrödinger equation at the next order of the perturbation
theory. Note also that, although we worked with the non-filtered equation in both
FGH and FGI cases we could not avoid a self-consistency constraint of balanced
initial conditions, namely that the barotropic component of the initial velocity field
should be almost divergenceless.
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3. Nonlinear geostrophic adjustment in a continuously stratified model
3.1. Preliminaries

The hydrostatic primitive equations in the Boussinesq approximation (HSPE) can be
written in standard notations as follows:

∂tvh + v · ∇vh + f0 ẑ ∧ vh +
1

ρ0

∇hP = 0,

∂zP + ρg = 0,

∂tρ + v · ∇ρ = 0,

∇ · v = 0.




(3.1)

Here the subscript h denotes the horizontal part of the fields (which depend now
on the full r = (x, y, z)) or operators. The velocity field is now three-dimensional:
v =(vh, w), as is nabla ∇ = (∇h, ∂z) and we close the system by requiring that the
vertical velocity vanishes at the top and the bottom boundaries:

w|z=−H = w|z=0 = 0. (3.2)

The density ρ and the pressure P may be decomposed into static and dynamic
parts (we consider the oceanographic context with ρ0 � ρs; the calculations may be
repeated with corresponding changes for the atmospheric context, see, e.g. Vallis 1996
for a description of the balanced motion):

ρ = ρ0 + ρs(z) + λρ ′(x, y, z; t), P = ps(z) + λp′(x, y, z; t), (3.3)

where

ps = −ρ0gz + g

∫ H

z

ρs(z
′, t) dz′ (3.4)

and λ is a non-dimensional amplitude of the relative deviations of the isopycnal
surfaces. Throughout this section ρs is assumed to be a stably stratified density profile
and primes in the dynamical part of the density and pressure will be omitted.

We solve an initial-value problem with initial conditions

vh|t=0 = vhI
(x, y, z), ρ|t=0 = ρI (x, y, z) (3.5)

(pressure and vertical velocity are not independent variables in HSPE and may be
expressed in terms of other variables via hydrostatics and incompressibility equations
in (3.1)).

To be consistent with the Boussinesq approximation (divergenceless of velocity)
and boundary conditions (3.2) the initial horizontal divergence DI = ∇h · vh should
obey the following relation: ∫ 0

−H

dz DI = 0. (3.6)

The PV equation has the form

(∂t + v · ∇)Π =0, (3.7)

where

Π = (ω + ẑf0) · ∇(ρs(z) + λρ) (3.8)

and

ω = (−∂zv, ∂zu, ∂xv − ∂yu) (3.9)

is the three-dimensional relative vorticity in the hydrostatic approximation. Introduc-
ing, as usual, the characteristic horizontal scale L and the characteristic horizontal
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velocity scale U we define the Rossby number ε = U/f0L. The characteristic vertical
scale is the fluid layer thickness, H � L, and, to be consistent with incompressibility,
the vertical velocity scale is W ∼ UH/L. The characteristic pressure scale is ρ0f0UL

and the characteristic density variations scale is ρ0f0UL/gH as dictated by the
Boussinesq equations (3.1). The non-dimensional version of (3.1) is

∂tvh + εv · ∇vh + ẑ ∧ vh + ∇hp = 0,

∂zp + ρ = 0,

∂tρ + εv · ∇ρ − sN2w = 0,

∇ · v = 0,


 (3.10)

where the Burger number Bu ≡ s = R2
d/L

2 and the baroclinic Rossby radius
Rd = N0H/f0 are introduced with N0 denoting the characteristic scale of the Brunt–
Väisälä frequency N = (−(g/ρ0)(dρs(z)/dz)1/2. We impose, as usual, (cf. e.g. Romanova
& Zeitlin 1984) the quasi-geostrophy condition λBu/Ro = O(1) and omit all order-one
numerical factors.

The PV equation can be written as

(∂t + εv · ∇)Π = 0, Π = Π0 + εΠ1 + ε2Π2, (3.11)

where

Π0 = −sN 2, Π1 = −sζN 2 + ∂zρ, Π2 = −∂zv∂xρ + ∂zu∂yρ + ζ∂zρ, (3.12)

and ζ denotes the vertical component of the relative vorticity ∂xv − ∂yu, as usual.
Using the density advection equation in (3.10) one can rewrite (3.11) as follows:

∂t

(
N2Ω − εΠ2 − ε

s
σρ2

)
+ εv · ∇

(
N 2Ω − εΠ2 − ε

s
σρ2

)
+

ε2

s

dσ

dz
wρ2 = 0, (3.13)

where we denote, for brevity

Ω = sζ − ∂z

( ρ

N2

)
, σ =

1

2N2

d2 log N2

dz2
. (3.14)

3.2. The QG regime

3.2.1. Definitions and statement of the main results

In this Section we assume that the relative deviations of the isopycnal surfaces are
small, λ= O(ε). Then from the quasi-geostrophy condition λs/ε = O(1) it follows that
s = O(1), which means that the scale of the motion is of the order of the Rossby
deformation radius, L ∼ Rd .

Qualitatively, the evolution of an arbitrary initial perturbation with small Rossby
number and Burger number of order unity is analogous to the two-layer QG case
considered in § 2.2, although the mathematics is more complicated. Again, our analysis
is performed up to the third order in ε. All fields are split in a unique way into non-
interacting slow and fast components obeying their proper evolution equations with
uniquely defined initial conditions.

The slow component obeys the single ‘improved’ QG equation for the slow pressure
field p̄ = p̄(0) + εp̄(1):

D

Dt1

[
∂z

(
1

N2
∂zp̄

)
+ ∇2

hp̄ − ε2J (∂xp̄, ∂yp̄) +
ε

N2

(
∂2

zzp̄∇2
hp̄ −

(
∂2

zxp̄
)2 −

(
∂2

zyp̄
)2

− σ (∂zp̄)2 − ∇Np̄ · ∇
[
N2

(
∇2

hp̄ + ∂z

(
1

N2
∂zp̄

))])]
= 0, (3.15)
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where D/Dt1 is the following advective derivative:

D

Dt1
. . . = ∂t1 . . . + J

(
p̄ − ε

2
∇p̄ · ∇Np̄, . . .

)
(3.16)

and ∇N = (∇h, ∂z/N
2). Equation (3.15) describes the QG motion on time scales of

the order of ε−2f −1, i.e. on much longer time scales than the standard QG equation
which follows from (3.15) if the O(ε) terms are neglected.

The fast component consists of the internal IGW emitted by the localized initial
disturbance. The waves obey the inhomogeneous wave equation for the fast pressure
field p̃ = p̃(0) + εp̃(1):

∂2
t t ∂z

(
1

N2
∂zp̃

)
+ ∂z

(
1

N2
∂zp̃

)
+ ∇2

hp̃ = εR(x, y, z; t, t1, . . .), (3.17)

with the boundary conditions

∂zp̃|z=−1,0 = 0 (3.18)

and well-defined initial conditions. The known right-hand side in (3.17) results from
nonlinear interactions of the lowest-order fast component with itself and with the
slow one. As in the 2RSW case, these interactions produce no significant resonances
and, therefore, the fast fields decay in time at a fixed spatial location and induce no
drag in the slow equation (3.15).

The full demonstration is available as a supplement to the online version or
on request from the authors or the Journal of Fluid Mechanics Editorial Office,
Cambridge. It generally follows that of Part 1 except for two new technical ingredients:
the decomposition of the fast part of the pressure with the help of the eigenfunctions
of the eigenproblem

∂z

(
1

N2
∂zΨm

)
+ λ2

mΨm = 0; ∂zΨm|z=−1,0 = 0, m = 0, 1, . . . , (3.19)

and the use of the PV-equation in the form (3.13).

3.3. The FG regime

3.3.1. Preliminaries

The stratified FG regime, like the two-layer ones considered above, is characterized
by O(1) isopycnal deviations, i.e. the parameter λ=O(1) and, hence, Bu = O(ε) � 1.
Therefore we do not use here the representation (3.3) for the density variable ρ; the
non-dimensional density equation in (3.10) is substituted by the following one:

∂tρ + εv · ∇ρ = 0. (3.20)

As usual in the frontal regime, it is convenient to introduce the complex horizontal
coordinates ξ, ξ ∗ and the complex velocity U. Taking into account (3.20) the system
(3.10) can then be rewritten as

∂tU + iU + 2∂ξ ∗p + ε[(U∂ξ + U∗∂ξ ∗)U + w∂zU] = 0,

∂zp + ρ = 0,

∂tρ + ε[(U∂ξ + U∗∂ξ ∗)ρ + w∂zρ] = 0,

∂ξ U + ∂ξ ∗ U∗ + ∂zw = 0.


 (3.21)

The initial conditions are

(U, ρ)t=0 = (UI , ρI ) (3.22)
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and we use, as before, the rigid lid top and bottom boundary conditions:

w|z=−1,0 = 0. (3.23)

Hence, by virtue of the continuity equation in (3.21) the barotropic part of the initial

horizontal velocity field UbtI =
∫ 0

−1
dz UI is divergenceless:

∂ξ UbtI + ∂ξ ∗ U∗
btI

= 0. (3.24)

3.3.2. The statement of the main results

The FG regime which we consider here is similar to the FGH sub-regime in the
two-layer model. The lowest-order velocity field is represented in the form

U(0) = A(x, y, z; t1) e−it + 2i∂ξ ∗ p̄, w = −∂ξ ∗ Me−it + c.c., (3.25)

where the slow modulation amplitude A of the inertial oscillations and the function
M are related as follows:

∂zM = A. (3.26)

As we see from (3.25), only the horizontal velocity U contains a slow component
expressed in terms of the slow pressure p̄; the lowest-order vertical velocity w is due
to inertial oscillations only.

The slow pressure obeys the following pair of equations:∫ 0

−1

dz
[
∂t1∇2p + J (p, ∇2p)

]
=0, (3.27)

∂2
t1z

p + J (p, ∂zp) = 0, (3.28)

which were first introduced by Benilov (1993). Evolution of the fast oscillations is
conveniently described by the modulation equation for M:

∂t1∂
2
zzM + J

(
p, ∂2

zzM
)

+ i
∇2

hp

2
∂2

zzM

− i

2
(∂zρ)∇2

hM − i[∂z(∂x + i∂y)p][∂z(∂x − i∂y)M] = 0. (3.29)

Again, we see that the slow component does not ‘feel’ the fast oscillations which means
no drag terms in (3.27), (3.28). At the same time the coefficients of the modulation
equation (3.29) depend on the slow pressure and density fields, i.e. the fast component
is guided by the slow one as in the FG regimes considered above. An important
point is that the inertial oscillations envelope and the slow vortex field evolve in the
same time t1, like in the two-layer FGH regime, and there is no time-scale separation
between the two, unlike the RSW FG regime and 2RSW FGI regime. As the initial
conditions considered below are almost arbitrary, a natural question arises: is an
analogue of the two-layer FGI regime possible in the continuously stratified model?
We address this point in § 4.

3.3.3. The lowest-order solution

Taking the lowest-order terms in system (3.21), (3.22), (3.23) yields the following
set of equations:

∂tU(0) + iU(0) + 2∂ξ ∗p(0) = 0,

∂zp
(0) + ρ(0) = 0,

∂tρ
(0) = 0,

∂ξ U(0) + ∂ξ ∗ U(0)∗ + ∂zw
(0) = 0,




(3.30)
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with initial and boundary conditions(
U(0)

I , ρ
(0)
I

)
= (UI , ρI ),

w(0)
∣∣
z=−1,0

= 0.

}
(3.31)

The third equation in (3.30) means that the density field is slow: ρ(0) = ρ̄0(r; t1, . . .).
The pressure field is split into the slow and the fast parts:

p = p̄(0)(r; t1, . . .) + p̃(0)(r; t, . . .). (3.32)

By introducing the slow–fast decomposition of the velocity field we obtain the
following equations for the slow and the fast components, respectively:

Ū(0) = 2i∂ξ ∗ p̄(0), ∂zp̄
(0) + ρ̄(0) = 0, ∂ξ Ū(0) + ∂ξ ∗ Ū∗(0) + ∂zw̄

(0) = 0, (3.33)

∂tŨ0 + iŨ0 = −2∂ξ ∗ p̃(0), ∂zp̃
(0) = 0, ∂ξ Ũ0 + ∂ξ ∗ Ũ∗

0 + ∂zw̃
(0) = 0. (3.34)

The corresponding boundary conditions are

w̄(0)
∣∣
z=−1,0

= w̃(0)
∣∣
z=−1,0

= 0. (3.35)

From (3.33), (3.35) it follows that w̄(0) = 0. We represent the fast component of the
horizontal velocity as a sum of baroclinic and barotropic parts:

Ũ(0) = Ũ(0)
bc (r, t, t1, . . .) + Ũ(0)

bt (x, y, t, t1, . . .),

∫ 0

−1

dzŨ(0)
bc = 0. (3.36)

Using (3.32), (3.34), and (3.35) we obtain for the barotropic component

∂tŨ(0)
bt + iŨ(0)

bt = −2∂ξ ∗ p̃(0), ∂ξ Ũ(0)
bt + ∂ξ ∗ Ũ(0)∗

bt = 0, (3.37)

whence it readily follows that Ũ(0)
bt = p̃(0) = 0. We thus obtain

Ũ(0) = Ũ(0)
bc = A(0)(r; t1, . . .) e−it ,

∫ 0

−1

dzA(0) = 0 (3.38)

and

w(0) = w̃(0) = W(0)(r; t1, . . .) e−it + c.c., (3.39)

where W(0) = −∂ξ M(0). The function M(0) is the primitive with respect to z of the
modulated amplitude of the inertial oscillations:

∂zM(0) = A(0). (3.40)

Thus, at the lowest order the flow is split into slow geostrophic (vortical) motion
with no vertical velocity and a fast inertial oscillations field. The former is completely
determined by the quasi-steady pressure field and the latter has no signature in
the pressure field. Regarding initial conditions, the slow density and pressure are in
hydrostatic balance, ∂zp̄

(0)
I = −ρ̄I , and by decomposing the initial pressure field into

the baroclinic and the barotropic parts:

p̄
(0)
I = p̄

(0)
bcI

(r) + p̄
(0)
btI

(x, y), (3.41)

where
∫ 0

−1
dz p̄

(0)
bcI

= 0, we obtain

p̄
(0)
bcI

= −
∫ z

−1

dzρI +

∫ 0

−1

dz′
∫ z′

−1

dzρI . (3.42)
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In order to find p̄
(0)
btI

and Ū(0)
I we represent Ū(0) in the same form:

Ū(0) = Ū(0)
bc (r, t1, . . .) + Ū(0)

bt (x, y, t, t1, . . .) (3.43)

with
∫ 0

−1
dz Ū(0)

bc =0. We have

Ū(0)
I = Ū(0)

bcI
(r) + Ū(0)

btI
(x, y), (3.44)

where Ū(0)
bcI

=2i∂ξ ∗ p̄
(0)
bcI

. Since UI = Ū(0)
I + Ũ(0)

I = Ū(0)
bcI

+ Ū(0)
btI

+ Ũ(0)
I and

∫ 0

−1
dz Ũ(0)

I = 0
the barotropic component at the initial moment is

Ū(0)
btI

= UbtI =

∫ 0

−1

dz UI (3.45)

and, therefore,

Ũ(0)
I = A(0)

I = UI −
∫ 0

−1

dz UI − Ū(0)
bcI

. (3.46)

Finally, the field p̄
(0)
btI

is determined from the equation

2i∂ξ ∗ p̄
(0)
btI

= Ū(0)
btI

. (3.47)

3.3.4. The second-order evolution equations

At first order in ε the system (3.21) yields

∂tU(1) + iU(1) = −
[
∂t1U(0) + 2∂ξ ∗p(1) +

(
U(0)∂ξ + U(0)∗∂ξ ∗

)
U(0) + w(0)∂zU(0)

]
,

∂zp
(1) + ρ(1) = 0,

∂tρ
(1) = −

[
∂t1ρ

(0) +
(
U(0)∂ξ + U(0)∗∂ξ ∗

)
ρ(0) + w(0)∂zρ

(0)
]
,

∂ξ U(1) + ∂ξ ∗ U(1)∗ + ∂zw
(1) = 0.




(3.48)

The evolution equation for the slow density field at this order

∂t1ρ
(0) + Ū(0)∂ξρ

(0) + Ū∗(0)∂ξ ∗ρ(0) = ∂t1ρ
(0) + J

(
p̄(0), ρ(0)

)
= 0 (3.49)

is readily derived from the mass conservation equation in (3.48) by averaging over
the fast time. Thus, the zeroth-order density field is horizontally advected by the
geostrophic velocity. The fast part of the mass conservation equation in (3.48) gives

∂tρ
(1) = −

[(
Ũ(0)∂ξ + Ũ(0)∗∂ξ ∗

)
ρ(0) + w̃(0)∂zρ

(0)
]
. (3.50)

Hence, the full density field at this order (cf. (3.39), (3.50)) is given by

ρ1 = ρ (1)(r; t1, . . .) + [R1(r; t1, . . .) e−it + c.c. ], (3.51)

whence

p(1) = p (1)(r; t1, . . .) +
[
P(1)(r; t1, . . .) e−it + c.c.

]
, (3.52)

where

∂zP(1) = −R(1) = i
[
A(0)∂ξρ

(0) + W(0)∂zρ
(0)

]
= i

∂
(
M(0), ρ(0)

)
∂ (z, ξ )

(3.53)

and we have used another standard notation for Jacobians allowing us to display
explicitly the independent variables.

As usual in the frontal regime, the right-hand side of the horizontal velocity
equation in (3.48) contains resonances. Their removal gives an evolution equation for
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the inertial oscillations envelope:

∂t1A(0) − 2i
∂
(
p̄(0), A(0)

)
∂ (ξ, ξ ∗)

+ 2iA(0)∂2
ξξ ∗ p̄

(0) + 2iW(0)∂z∂ξ ∗ p̄(0) + 2∂ξ ∗ P(1) = 0. (3.54)

Differentiating (3.54) in z and using (3.53) and the definition of M(0) we arrive at the
following modulation equation for M(0):

∂t1∂zzM(0) − 2i
∂
(
p̄(0), ∂2

zzM(0)
)

∂ (ξ, ξ ∗)
+ 2i∂2

ξξ ∗ p̄
(0)∂2

zzM(0)

− 2i
(
∂zρ

(0)
)
∂2

ξξ ∗ M(0) − 4i
(
∂2

ξzp̄
(0)

)
∂2

ξ ∗zM(0) = 0, (3.55)

which can be rewritten in Cartesian coordinates in the form (3.29).
This equation (with additional terms arising on the β-plane) was initially derived

by Young & Ben Jelloul (1997) and then studied by Balmforth & Young (1999).
Young & Ben Jelloul omitted the last term, arguing that the shear of the background
geostrophic flow in their setting was weak. However, they also pointed out that this
term was needed to ensure energy conservation for the inertial oscillations field.

Once resonances are removed, the first correction U(1) to the (complex) horizontal
velocity field is readily calculated from the first equation in (3.48). Then the first
correction to the vertical velocity can be easily determined from the continuity
equation in (3.48). Its slow part is given by

∂zw
(1) = −2∂t1∂

2
ξξ ∗ p̄

(0) − 2i∂2
ξξ ∗ p̄

(1) + 4i∂ξ

(
∂ξ ∗ p̄(0)∂2

ξξ ∗ p̄
(0) − ∂ξ p̄

(0)∂2
ξ ∗ξ ∗ p̄

(0)
)

− i∂ξ

(
A(0)∗

∂ξ ∗ A(0) − ∂ξ ∗ M(0)∗∂zA(0)
)

+ c.c. (3.56)

By integrating this equation over z from −1 to 0 and using the definition of M(0) and
the vertical boundary conditions we obtain (3.27). Finally, we rewrite (3.49) in terms
of p̄(0) and obtain (3.28).

We thus see that at this order the evolution of the system is described by two
autonomous equations for the slow pressure coupled with a modulation equation for
inertial oscillations field. The modulation equation (3.55) describes the redistribution
of energy among the inertial oscillations ‘catalyzed’, in the language of Lelong &
Riley (1991), by the vortical component. It is worth repeating that, just as in the
two-layer FGH regime (and unlike the one-layer FG and two-layer FGI), the slow
component and the fast oscillations envelope evolve in the same time t1.

3.3.5. The third-order approximation

As before, we will not dwell on the tedious, but rather straightforward, calculations
of the third-order corrections to the velocity and density (or pressure) fields, limiting
ourselves to analysis of the PV equation. We should mention, however, that cubic
corrections to the modulation equation (3.29) identically vanish, as in one- and
two-layer FG regimes.

The potential vorticity Π in the FG context is expressed as

Π = ∂zρ + ε[ζ∂zρ − ∂zv∂xρ + ∂zu∂yρ]. (3.57)

Let us state the result of the calculations at the previous orders of the perturbation
theory. At the lowest order we find that Π (0) = ∂zρ

(0) does not depend on the fast
time. At the first order in ε we obtain from (3.11)

∂tΠ
(1) + ∂t1Π

(0) + v(0) · ∇Π (0) = 0, (3.58)
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where

Π (1) = ∂zρ
(1) + ζ (0)∂zρ

(0) − ∂zv
(0)∂xρ

(0) + ∂zu
(0)∂yρ

(0). (3.59)

Note that the inertial oscillations give rise to PV at the first order as

Π (1) = ∂zρ
(0) − i

∂
(
ρ(0), U(0)

)
∂ (z, ξ )

+ c.c. (3.60)

Finally, at the third order we have the equation

∂tΠ
(2) + ∂t1Π

(1) + ∂t2Π
(0) + v(0) · ∇Π (1) + v(1) · ∇Π (0) = 0. (3.61)

Averaging this equation over the fast time t gives

∂t1Π̄
(1) + ∂t2Π̄

(0) + v̄(0) · ∇Π̄ (1) + v̄(1) · ∇Π̄ (0) +
〈
ṽ(0) · ∇Π̃ (1)

〉
= 0. (3.62)

Tedious but straightforward calculations using the Jacobi identity for the Jacobians
show that the fast-component contributions containing the envelope of the inertial
oscillations A(0) in the third and the fifth terms in (3.62) are mutually cancelled, while
they are absent in the fourth term. Thus, there is no inertial-oscillations drag in the
PV evolution equation. By introducing the ‘full’ fields

p̄ = p̄(0) + εp̄(1), (3.63)

Π̄ = −(1 + ε∇2p̄)∂2
zzp̄ + ε|∇∂zp̄|2 (3.64)

the PV evolution equation may be rewritten in an explicitly conservative form:

∂τΠ + v · ∇Π = O(ε2), (3.65)

where the slow divergenceless velocity field v̄ is given by the complete geostrophic
velocity plus slow ageostrophic corrections. These corrections are provided by the
slow pressure terms in Ū(1), w̄(1), the terms containing self-interaction of the fast
component being cancelled as explained above.

4. Discussion
The problem of nonlinear geostrophic adjustment or, more generally, the problem

of interaction between the fast and the slow components of motion is of fundamental
importance for understanding rotating stratified turbulence and has been under active
study for many years (see e.g. Bartello 1995 and references therein). Practically, its
solution is crucial for weather and climate prediction (see Part 1 for general discussion).
This problem is attracting much attention from the mathematical community and
many important results have recently been obtained (Babin, Mahalov & Nicolaenko
1996, 1999, 2000; Babin et al. 1997; Embid & Majda 1996, 1998). All these works deal
with a spatially periodic motion in a periodic box containing a ‘soup’ of wave-modes
and ‘bones’ of vortex-modes evolving together. This setting is clearly well-suited
for comparisons with numerical simulations of turbulence and allows, in particular,
application of the ideas of statistical equilibrium to find the evolution trends (cf.
Bartello 1995).

In the present paper we take a different approach, however, which is more
appropriate when studying geostrophic adjustment. Namely, we consider the problem
of the evolution of a localized initial disturbance in the open domain, thus letting the
fast waves be radiated to infinity. In terms of comparison with numerical simulations,
therefore, our results should correspond to the sponge boundary conditions in the
horizontal directions. This approach allows us to avoid wave–wave resonances which
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were thoroughly studied in the above-mentioned papers. The only resonances which
do play a role in our analysis are those due to the ‘catalytic’ interactions (Lelong &
Riley 1991; Bartello 1995) of quasi-stationary inertial oscillations with the vortical
flow in the frontal geostrophic regime. Inertial oscillations are non-propagative and,
therefore, they remain for a long time at the initial perturbation location. However,
they do not make any contribution to the equations governing the slow motion,
which we confirm by direct calculation. Another idealization is that we use the
hydrostatic approximation compatible with a thin slab geometry, leaving the study of
non-hydrostatic Euler–Boussinesq equations for a future work. This approximation
simplifies the analysis because of the absence of vertically propagating inertia waves
which can produce resonances due to the smallness of their horizontal group velocities
(cf. Babin, Mahalov & Nicolaenko 1998).

The main result of the present work is that, like in the barotropic case considered
in Part 1, the motion of rapidly rotating (small Rossby number) stratified fluid is
uniquely split into the slow part close to the geostrophic balance and the fast part
consisting of rapidly propagating IGW or non-propagating inertial oscillations. The
key point is that the fast component does not affect the slow one up to the third
order in the Rossby number. At the same time, the adjustment scenario strongly
depends on the stratification and the order of magnitude of typical deviations of
the isopycnal surfaces from their equilibrium positions. We considered above the
geostrophic regimes for two types of stratification of the fluid contained in a slab: a
density jump (two-layer model) and a smooth density profile (continuously stratified
model). If the deviations of the isopycnal surfaces (of the interface in the two-
layer case) are small, the adjustment follows the quasi-geostrophic scenario. The
slow component is governed by the standard PV equations on times of the order
of (f Ro)−1. The method we use allows to proceed further in the expansion in Ro
and to derive an improved quasi-geostrophic PV equation describing the slow QG
component on much longer times of the order of (f Ro2)−1. This equation is also
written in PV-conservation form and is reduced to the standard quasi-geostrophic
PV equation for times O(f −1Ro−1). The fast component consists of the internal IGW
rapidly propagating outward from the localized initial perturbation. It decays in
time at a fixed spatial location. Nonlinear interactions of the fast waves with each
other and with the slow component do not produce any drag in the slow-component
equations (at least up to times O(f −1Ro−2)).

In the case of strong deviations of the isopycnal surfaces all the fields, again, are
split into slow and fast components, each of them evolving from the well-defined
initial conditions. But unlike the QG case the fast component here consists of non-
propagating inertial oscillations with slowly modulated amplitude. The modulation
is described by a Schrödinger-type equation with coefficients depending on the slow
variables, i.e. the oscillations are strongly coupled to the slow component, unlike the
QG case. Another distinction from the QG case is that nonlinear self-interaction of
the fast component does give rise to the slow velocity field. However, and this is a
non-trivial fact, this interaction does not result in any drag terms in the equations for
the slow component.

Correspondingly, the slow component is governed by the frontal geostrophic
dynamics equations derived in the papers cited in the Introduction. In the two-
layer model the frontal regime depends strongly on the density stratification, i.e. on
the ratio of the layer depths. We distinguish between two basic cases: homogeneous
FGH (layer depths of the same order) and inhomogeneous FGI (thin upper layer).
In the FGH sub-regime the slow component and the modulation amplitude of the
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inertial oscillations evolve in the same slow time t1 = Ro t while in the FGI regime
the slow component is even slower and evolves in t2 = Ro2t , while the modulation
amplitude still evolves in t1. Thus, for large-scale initial disturbances with strong
density perturbations the geostrophic adjustment may be incomplete or delayed due
to the presence of the fast near-inertial oscillations co-evolving with the slow frontal-
geostrophic vortical component of the flow.

In the continuously stratified fluid the frontal regime is similar to the two-layer
FGH sub-regime as the slow component and the envelope of the inertial oscillations
both evolve in t1. It should be noted, however, that while performing our calculations
we tacitly assume that the initial density has no discontinuities nor sharp gradients in
the vertical. If this assumption does not hold, the asymptotic procedure of § 3.3 should
be modified. We believe that regimes analogous to the FGI one are also possible
for certain continuous stratifications, for example the thermocline-type stratifications
with a thin sharp thermocline.

The perturbation method we use imposes obvious self-consistency restrictions and
has a validity domain limited in time. The motion should preserve its single-scale
character for both fast and slow components (including the vertical scale in conti-
nuously stratified model) and there should not be explosive finite-time instabilities in
slow dynamics destroying the slow-time scaling.

The limits of the single space-scale approach become evident when passing to the
β-plane equations. The β-effect may be introduced in all models above along the
lines of Part 1 with the same conclusions. First, the fast–slow splitting persists on
the β-plane, too, and the slow-component equations are the same as those derived by
filtering of the fast component. Thus, the slow dynamics of the stratified fluid on the
β-plane is self-consistent. Second, the single spatial-scale asymptotic approach results
in incurable secular growth of the higher-order fast corrections. A self-consistent
asymptotic procedure, yet to be developed, should be based on at least two spatial
scales in order to take into account distortions of the fast-wave rays due to the spatial
inhomogeneity induced by the β-effect.

Another problem is baroclinic instability which should be endemic in the frontal
regimes, whose characteristic scales are much larger than the deformation radius. It
is evident that this instability can destroy the presumed FG scaling if it gives rise
to the growth of perturbations with scale of the order of the deformation radius.
Benilov (1993) showed that in the continuously stratified frontal regime the instability
occurs for perturbations with small enough horizontal scale. Moreover, the instability
growth rate tends to infinity as the perturbation scale goes to zero. Stability of the
two-layer frontal geostrophic regimes was considered by Benilov & Cushman-Roisin
(1994). Swaters (1993) explored a similar problem for the two-layer ocean with sloping
bottom. Karsten & Swaters (2000a, b) investigated in detail the stability of various
two-layer frontal sub-regimes on the β-plane. The results of these papers indicate
that higher-order corrections to the FG slow equations (like those calculated above
for the QG-regime) are necessary to control the instability. In any case our analysis,
as in the RSW case in Part 1, shows that the evolution properties of slow structures,
in general, and their stability, in particular, may be safely studied within the slow
dynamics equations as they are not influenced at all by the fast component of the
flow. Even if the flow in the frontal regime develops a baroclinic instability, unless this
is explosive one can still follow the early stages (note that ‘early’ is in the slow-time
sense and that the baroclinic instability is known to be slow to develop) of the joint
evolution of inertial oscillations and vortex flow with the help of the fast and slow
FG equations.
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We should also emphasize that the ‘improved’ QG equations obtained in Part 1 and
in the present paper deserve further study as they contain higher derivatives than the
standard QG equations which should modify the short-scale behaviour of solutions.
It should be noted that the improved QGPV equations in RSW, 2RSW and HSPE
may be simplified by changing from the geostrophic pressure(s) to the geostrophic
Bernoulli function(s) B = p − 1

2
ε(∇p)2. (The usefulness of the Bernoulli function in

the context of balanced motions was advocated long ago by Sutyrin 1994). In this
way the gradients disappear from the advecting velocity and the third derivatives
disappear from the advected PV, which is important for computational purposes. It
should be also mentioned that Vallis (1996) obtained a system of balanced equations
from ‘a step beyond quasi-geostrophy’ approximation by direct filtering of the fast
component and by considering corrections to the QG PV-inversion in the primitive
equations in the atmospheric context. We believe that this system may be further
reduced to a single improved QGPV equation.
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